\qquad
Mr. Villegas \qquad

Review for Test 1

1) $-2|-4+2 \mathrm{x}|=-16$
2) $x=-2$
3) $x=6$ and $x=-2$
4) $x=6$
5) can't be solve
6) Given the relation $R=\{(-2,3),(a, 4),(1,9),(0,7)\}$. Which replacement for \boldsymbol{a} makes this relation a nonfunction?
7) 2
8) 9
9) 7
10) 1
11) Which tables below represent a function?

Table 1

Input x	Output y
-2	-3
-1	-1
0	1
1	3
2	5
3	7
4	9

Table 2

Input x	Output y
4	-2
1	-1
0	0
1	1
4	2
9	3
16	4

Table 3

Input x	Output y
-2	0.44
-1	0.67
0	1
1	1.5
2	2.25
3	3.37
4	5.06

Table 4

Input x	Output y
-2	-3
-1	-5
1	-1
1	-3
2	-10
3	-2
3	-8

4) What is the solution to the inequality

$$
7-\frac{2}{3} x<x-8
$$

1) $x>9$
2) $x>-3 / 5$
3) $x<9$
4) $x<-3 / 5$
5) What is the solution to $|10+4 \boldsymbol{x}| \leq 14$?
6) $-6<x<1$
7) $-1 \leq \mathrm{x} \leq 6$
8) $x \geq 1$ or $x \leq-6$
9) $-6 \leq x \leq 1$
10) Graph the following function on the set of axes below.

$$
f(x)=\left\{\begin{array}{lr}
|x|, & -3 \leq x<1 \\
4, & 1 \leq x \leq 8
\end{array}\right.
$$

7) The parent function ${ }^{h(x)}$ is graphed below. Graph the function $\mathbf{g}(\mathbf{x})=\mid \mathbf{x - 2 | - 3}$ and determine the transformation that is taking place.

8) Writing the slope intercept form of the equation of a line passing through the points $(6,0)$ and (-2, 4).
9) Given $f(x)=4 x^{2}+5 x$ and $g(x)=2 x^{3}+x^{2}-5 x+1$ find the following and simplify.
a) $f(-3)=$
b) $g(-2)=$
c) $\boldsymbol{g}(\boldsymbol{x}+\boldsymbol{h})-\boldsymbol{g}(\boldsymbol{x})$
h
d) If you let $\mathbf{h}=\mathbf{0}$, what do you get from your answer to part (c)?
10) Find the average range of change for the given interval.

$$
y=-3 x^{3}+2 x^{2},[-3,2]
$$

11) Suppose the quantity supplied S and quantity demand D of baseball hats are

$$
S(p)=-400+100 p \text { and } D(p)=2000-50 p
$$

a) Graph these two functions.

b) Find the equilibrium price and equilibrium quantity.
c) Determine the prices for which the quantity demanded is higher than the quantity supplied.
11) Solve for x and y using:
a) Elimination

$$
\begin{aligned}
& -7 x+y=-19 \\
& -2 x+3 y=-19
\end{aligned}
$$

b) Substitution

$$
\begin{aligned}
& x-y=11 \\
& 2 x+y=19
\end{aligned}
$$

c) Graphing

$$
\begin{array}{r}
-4 x-2 y=-12 \\
4 x+8 y=-24
\end{array}
$$

12) The school that Stefan goes to is selling tickets to a choral performance. On the first day of ticket sales the school sold 3 senior citizen tickets and 1 child ticket for a total of $\$ 38$. The school took in $\$ 52$ on the second day by selling 3 senior citizen tickets and 2 child tickets. Find the price of a senior citizen ticket and the price of a child ticket.
