Review for Test 1

- 1) -2 |-4 + 2x| = -16
 - 1) x = -2
- 2) x = 6 and x = -2
- 3) x = 6
- 4) can't be solve
- 2) Given the relation $R = \{(-2, 3), (a, 4), (1, 9), (0, 7)\}$. Which replacement for a makes this relation a nonfunction?
 - 1) 2

2) 9

3) 7

4) 1

3) Which tables below represent a function?

Table 1

Table I					
Input x	Output				
-2	-3				
-1	-1				
0	1				
1	3				
2	5				
3	7				
4	9				

Table 2

Input x	Output	
4	-2	
1	-1	
0	0	
1	2 3	
4		
9		
16	4	

Table 3

Input	Output	
x	у	
-2	0.44 0.67	
-1		
0		
1	1.5	
2	2.25 3.37	
3		
4	5.06	

Table 4

Input x	Output			
-2	-3			
-1	-5 -1 -3			
1				
1				
2	-10			
3	-2			
3	-8			

$$7 - \frac{2}{3}x < x - 8$$
4) What is the solution to the inequality

- 1) x > 9
- 2) x > -3/5
- 3) x < 9
- 4) x < -3/5
- 5) What is the solution to $|10 + 4x| \le 14$?
- 1) -6 < x < 1 2) $-1 \le x \le 6$ 3) $x \ge 1$ or $x \le -6$ 4) $-6 \le x \le 1$

6) Graph the following function on the set of axes below.

$$f(x) = \begin{cases} |x|, & -3 \le x < 1 \\ 4, & 1 \le x \le 8 \end{cases}$$

7) The parent function h(x) is graphed below. Graph the function g(x) = |x-2| - 3 and determine the transformation that is taking place.

8) Writing the slope intercept	form of the equation	n of a line naccing	through the points	$(6 \ 0)$ and $(-2 \ 4)$
or writing the stone intercent	IVI III VI HIC CHUAHV	II VI A IIIIC DASSIIIZ	սու ժաջու այե քժունչ	(U. V) anu (-4. +).

9) Given
$$f(x) = 4x^2 + 5x$$
 and $g(x) = 2x^3 + x^2 - 5x + 1$ find the following and simplify.

a)
$$f(-3) =$$

b)
$$g(-2) =$$

c)
$$g(x + h) - g(x)$$

d) If you let h = 0, what do you get from your answer to part (c)?

10) Find the average range of change for the given interval.

$$y = -3x^3 + 2x^2$$
, [-3, 2]

11) Suppose the quantity supplied S and quantity demand D of baseball hats are

$$S(p) = -400 + 100p$$
 and $D(p) = 2000 - 50p$

a) Graph these two functions.

b) Find the equilibrium price and equilibrium quantity.

c) Determine the prices for which the quantity demanded is higher than the quantity supplied.

- 11) Solve for x and y using:
- a) Elimination

$$-7x + y = -19$$

 $-2x + 3y = -19$

b) Substitution

$$x - y = 11$$
$$2x + y = 19$$

c) Graphing

$$-4x - 2y = -12$$

 $4x + 8y = -24$

12) The school that Stefan goes to is selling tickets to a choral performance. On the first day of ticket sales the school sold 3 senior citizen tickets and 1 child ticket for a total of \$38. The school took in \$52 on the second day by selling 3 senior citizen tickets and 2 child tickets. Find the price of a senior citizen ticket and the price of a child ticket.